miércoles, 25 de febrero de 2015

Electromagnetismo


En 1820 el físico danés Hans Christian Oerted descubrió que entre el magnetismo y las cargas de la corriente eléctrica que fluye por un conductor existía una estrecha relación. Cuando eso ocurre, las cargas eléctricas o electrones que se 4 encuentran en movimiento en esos momentos, originan la aparición de un campo magnético tal a su alrededor, que puede desviar la aguja de una brújula.
Una de las interacciones fundamentales descritas por la Física es la electricidad. La carga eléctrica, al igual que la masa, es una propiedad característica de la materia y es la causa de los fenómenos asociados a la electricidad.



Probablemente fueron los antiguos filósofos griegos, –particularmente Tales de Mileto (624 – 543 a. C.)– los primeros en observar fenómenos eléctricos. Unos 500 años antes de Cristo, comprobaron que cuando frotaban con piel de animal un trozo de ámbar (un tipo de resina fósil), esta era capaz de atraer algunos objetos muy livianos como semillas secas.

Los fenómenos electrostáticos, como escuchar chasquidos al sacarnos una prenda de vestir, peinar varias veces nuestro cabello seco y luego acercarlo a pequeños trozos de papel, por ejemplo, se producen por la interacción de la carga eléctrica de un cuerpo con la de otro. La palabra electricidad proviene del término élektron, palabra con que los griegos llamaban al ámbar.


Cuando un átomo –o un cuerpo– tiene la misma cantidad de cargas positivas (protones) y
negativas (electrones) se dice que está eléctrica mente neutro. Si se produce un desequilibrio entre la cantidad de electrones y protones, se dice que está electrizado. El cuerpo que pierde electrones queda con carga positiva y el que recibe electrones queda con carga negativa. Se llama carga eléctrica (q) al exceso o déficit de electrones que posee un cuerpo respecto al estado neutro. La carga neta corresponde a la suma algebraica de todas las cargas que posee un cuerpo.

La carga eléctrica permite cuantificar el estado de electrización de los cuerpos siendo su unidad mínima la carga del electrón. Esto significa que la carga eléctrica q de un cuerpo está cuantizada y se puede expresar como nq, en que n es un número entero (incluyendo el cero); sin embargo, como la carga del electrón es muy pequeña, se utiliza un múltiplo de ella: el coulomb (C), que es la carga obtenida al reunir 6,24 x 1018 electrones. También se usan con mayor frecuencia los submúltiplos del coulomb: el microcoulomb (µC) que equivale a 10–6 C o el picocoulomb (pC) que corresponde a 10–12 C (otros submúltiplos: el mC = 10–3 C o el nC = 10–9 C). Por medio de un electroscopio (instrumento detector de carga) se puede comprobar que un cuerpo está electrizado y que los cuerpos electrizados con el mismo signo se repelen y los cuerpos electrizados con signo distinto se atraen.

Fuerza electromagnética

Cuando una carga eléctrica está en movimiento crea un campo eléctrico y un campo magnético a su alrededor.
Así pues, este campo magnético realiza una fuerza sobre cualquier otra carga eléctrica que esté situada dentro de su radio de acción. Esta fuerza que ejerce un campo magnético será la fuerza electromagnética.
Si tenemos un hilo conductor rectilíneo por donde circula una corriente eléctrica y que atraviesa un campo magnético, se origina una fuerza electromagnética sobre el hilo. Esto es debido a que el campo magnético genera fuerzas sobre cargas eléctricas en movimiento.

Si en lugar de tener un hilo conductor rectilíneo tenemos un espiral rectangular, aparecerán un par de fuerzas de igual valor pero de diferente sentido situadas sobre los dos lados perpendiculares al campo magnético. Esto no provocará un desplazamiento, sino que la espira girará sobre si misma.

Espira rectangular

Campo magnético creado por una corriente eléctrica

Una corriente que circula por un conductor genera un campo magnético alrededor del mismo.El valor del campo magnético creado en un punto dependerá de la intensidad del corriente eléctrico y de la distancia del punto respecto el hilo, así como de la forma que tenga el conductor por donde pasa la corriente eléctrica.

El campo magnético creado por un elemento de corriente hace que alrededor de este elemento se creen líneas de fuerzas curvas y cerradas. Para determinar la dirección y  sentido del campo magnético podemos usar la llamada regla de la mano derecha.

Regla de la mano derecha

Interesante:


http://www.lu8xw.com.ar/descargas/fisica4.pdf
http://www.endesaeduca.com/Endesa_educa/recursos-interactivos/conceptos-basicos/iv.-electromagnetismo

martes, 24 de febrero de 2015

Magnetismo

Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este campo magnético es más intenso en dos zonas opuestas del imán, que son los polos norte y sur del imán. El polo norte de un imán se orienta hacia el norte geográfico, mientras que el polo sur lo hacer hacia el sur geográfico (gracias a esta propiedad funcionan las brújulas). Esta orientación de los imanes se produce como consecuencia de las fuerzas magnéticas de atracción que se producen entre polos opuestos de imanes y de repulsión entre polos homólogos.


La tierra es un enorme imán cuyo polo norte se encuentra en el polo sur geográfico y en consecuencia el polo sur, en el norte geográfico, de ahí, que el polo norte de un imán se oriente al norte geográfico (donde se encuentre el polo sur magnético terrestre) y viceversa.

Los efectos de un imán se manifiestan en una zona donde decimos que existe un campo magnético. Los campos magnéticos los podemos representar gráficamente mediante las líneas de inducción magnética, que por convenio, salen del polo norte y entran por el polo sur (son líneas cerradas, por lo que no puede existir un  imán con un solo polo).

La intensidad de un campo magnético la podemos cuantificar mediante la inducción magnética o densidad de flujo B. La unidad de medida de esta magnitud es el Tesla (T). Al número total de líneas de inducción magnética que atraviesan una superficie magnética se denomina flujo magnético Φ. La unidad de medida para el flujo magnético es el Weber (Wb)

Los fenómenos magnéticos se relacionan con los imanes naturales, que son trozos de un mineral de hierro, llamado magnetita (Fe3O4). Tienen la propiedad de atraer al hierro, sobre todo en las zonas
del imán llamadas polos. El imán natural, en contacto con el acero, hace que éste mantenga también las propiedades magnéticas.
Resultado de imagen para imanes naturales

Nociones previas

Las propiedades magnéticas son más acusadas en los extremos del imán, que se denominan polos magnéticos, polo Norte (N) y polo Sur (S). Del mismo modo que cargas eléctricas del mismo signo se repelen y de distinto se atraen, imanes que se acercan por polos iguales se repelen y si se acercan por polos opuestos se atraen. Es imposible aislar un único polo magnético, de modo que si un imán se parte en dos, en cada trozo vuelve a haber un polo Norte y uno Sur.
De forma análoga al campo eléctrico en magnetismo hablamos en términos de un vector llamado campo magnético B representado por sus líneas de campo de modo que en cada punto del espacio el campo es tangente a dichas líneas.
El hecho de que los polos magnéticos nunca se puedan dar por separado se traduce en que las líneas de campo son siempre cerradas, saliendo del polo Norte y entrando por el polo Sur.



Cuando un trozo de hierro, un imán o un hilo de corriente se colocan en una zona en la que existe un campo se ven sometidos una fuerza que tiende a orientarlos de una forma determinada.

Materiales magnéticos

El comportamiento de los materiales en presencia de un campo magnético sólo puede explicarse a partir de la mecánica cuántica, ya que se basa en una propiedad del electrón conocida como espín. Se clasifican fundamentalmente en los siguientes grupos:

  • Ferromagnéticos: constituyen los imanes por excelencia, son materiales que pueden ser magnetizados permanentemente por la aplicación de campo magnético externo. Por encima de una cierta temperatura (temperatura de Curie)se convierten en paramagnéticos. Como ejemplos más importantes podemos citar el hierro, el níquel, el cobalto y aleaciones de éstos.
  • Paramagnéticos: cada átomo que los constituye actúa como un pequeño imán pero se encuentran orientados al azar de modo que el efecto magnético se cancela. Cuando se someten a la aplicación de un B adquieren una imanación paralela a él que desaparece al ser retirado el campo externo. Dentro de esta categoría se encuentran el aluminio, el magnesio, titanio, el wolframio o el aire.
  • Diamagnéticos: en estos materiales la disposición de los electrones de cada átomo es tal que se produce una anulación global de los efectos magnéticos. Bajo la acción de un campo magnético externo la sustancia adquiere una imanación débil y en el sentido opuesto al campo aplicado. Son diamagnéticos por ejemplo el bismuto, la plata, el plomo o el agua.



FUERZA MAGNÉTICA. LEY DE LORENTZ

Dado que una carga eléctrica en movimiento induce un campo magnético, podemos considerar a esta carga como un imán. Pues bien, al igual que cuando aproximamos dos imanes comprobamos que entre ellos existe una fuerza (de repulsión si aproximamos polos homólogos y de atracción si los polos son opuestos), una carga eléctrica que se desplaza en las proximidades de un imán (en el seno de un campo magnético) también experimentará ese tipo de fuerzas.
El valor de esta fuerza depende del valor de la carga eléctrica en movimiento, la intensidad del campo magnético y de la velocidad a la que se desplaza la carga. Para determinar su valor podemos aplicar la ley de Lorentz. Para conocer su dirección y sentido se puede aplicar la regla de la mano derecha



FUERZA ELECTROMOTRIZ INDUCIDA. LEY DE LENZ

Hasta ahora hemos visto que un campo magnético puede ser inducido por una corriente eléctrica y como un campo magnético es capaz de producir una fuerza sobre cargas eléctricas en movimiento. Ahora vamos a ver como un campo magnético puede inducir una fuerza electromotriz (tensión eléctrica) sobre un conductor. Efectivamente, si movemos un conductor que se encuentra en el seno de un campo magnético, sobre el se inducirá una fuerza electromotriz. El valor de esta fuerza depende de la velocidad a la que el conductor se mueva, la longitud de este y de la intensidad del campo magnético:


Mas información:



http://www.etitudela.com/Electrotecnia/downloads/magnetimo.pdf
http://acer.forestales.upm.es/basicas/udfisica/asignaturas/fisica/magnet/intro_magnet.html

Electricidad

Origen de la Electricidad

No podemos afirmar a ciencia cierta a partir de qué momento el hombre descubrió el fenómeno que llamamos electricidad, pero existen evidencias de que 600 años antes de cristo fue observado dicho fenómeno por un filosofo griego, Thales de Mileto (630-550 AC), quien descubrió un misterioso poder de atracción y de repulsión cundo frotaba un trozo de ámbar amarillo con una piel o una tela. Esta sustancia resinosa, denominada “Elektrón” en griego, dio origen al nombre de la partícula atómica Electrón, de la cual se deriva el termino ELECTRICIDAD.


Resultado de imagen para electricidad

Sin embargo fue el filósofo Griego Theophrastus (374-287 AC) que dejó constancia del primer estudio científico sobre la electricidad al descubrir que otras sustancias tienen también el mismo poder de atracción.
Resultado de imagen para benjamin franklin

Benjamín Franklin (1706-1790) En 1747 inició sus experimentos sobre la electricidad. Adelantó una posible teoría de la botella de Leyden, defendió la hipótesis de que las tormentas son un fenómeno eléctrico y propuso un método efectivo para demostrarlo. Su teoría se publicó en Londres y se ensayó en Inglaterra y Francia antes incluso de que él mismo ejecutara su famoso experimento con una cometa. En 1752, Inventó el pararrayos y presentó la llamada teoría del fluido único para explicar los dos tipos de electricidad, positiva y negativa.

Que es?

Es una forma invisible de energía que produce como resultado existencia de unas diminutas partículas llamadas ELECTRONES LIBRES en los átomos de ciertos materiales o sustancias. Estas partículas, al desplazarse a través de la materia, constituyen lo que denominamos una corriente eléctrica.

Es decir, que es un agente físico que llena la estructura atómica de la materia, y todo lo que vemos, sentimos y ocupa un lugar en el espacio, esta constituido por diminutas partículas o corpúsculos de electricidad, denominados electrones.

En otras palabras, la electricidad no es un invento del hombre sino una fuerza natural; esta fuerza o fenómeno físico se origina por cargas eléctricas estáticas o en movimiento. Cuando una carga se encuentra en reposo produce fuerzas sobre otras situadas en su entorno. Si la carga se desplaza produce también fuerzas magnéticas. Hay dos tipos de cargas eléctricas, llamadas positivas y negativas, estas al ser de igual carga se repelen y las que tienen diferente carga se atraen.

La electricidad en su manifestación natural mas imponente seria el relámpago, que se producen cuando se establece una diferencia de potencial elevada y son descargas eléctricas que se produce entre la tierra y las nubes conocidas comúnmente como nubes cumulonimbus, las diferencias de potencial entre la nube y la tierra al momento de producirse la descarga, son del orden del millón de voltios (1.000.000V) y la corriente que atraviesa el aire durante la descarga, es del orden de los 10.000 amperes (10.000 A).

Los cuerpos conductores

Son aquellos materiales que ofrece poca resistencia al flujo de electrones o electricidad dejando pasar fácilmente la corriente eléctrica, de manera semejante como las tuberías conducen agua a
través de un circuito hidráulico. Para que un cuerpo sea conductor necesita tener átomos con muchos
electrones libres, que se puedan mover con facilidad de un átomo a otro.

Los conductores utilizados en instalaciones eléctricas son generalmente alambres de cobre o de aluminio, desnudos o recubiertos con algún tipo de material aislante que son los que actúan como paredes de protección e impidiendo que los electrones puedan moverse fuera de los alambres al ser
contactados por objetos conductores externos.

Los cuerpos aislantes

Son los que no permiten el paso e intercambio de electrones periféricos siendo sus átomos normalmente estables, es decir, que no permiten el paso de la corriente eléctrica. Algunos materiales aislantes son:

  • La madera.
  • El vidrio.
  • El plástico.
  • La cerámica.

Algunos materiales son usados en el recubrimiento de los alambres conductores, esto ase que la corriente circule por el interior del conductor y sus electrones no salgan al exterior del alambre, protegiéndonos así de descargas o choques eléctricos.

Corriente eléctrica

La corriente eléctrica o intensidad (I), es simplemente, el movimiento de cargas eléctricas que pasa a través de un conductor, o por un punto dado de un circuito, durante un tiempo determinado. La unidad básica de medida de la corriene eléctrica es el AMPERIO o AMPER (A), denominada así en honor al
sabio francés André Marie Ampére (1775-1836).

Intensidad (I) es el numero de electrones expresados en CULOMBIOS) que
pasan por segundo. Cuando en un segundo pasa un culombio, se dice que la corriente tiene una intensidad de 1 amperio, si pasan 3 culombios cada segundo, serán tres amperios, y así sucesivamente.

Q (culombios)
(Amperios) I = -----------------
t (segundos)

La cantidad de corriente que circula a través de un circuito eléctrico, determinan el calibre de los conductores a utilizarse en el mismo, esto quiere decir, que no podemos utilizar un cable delgado en un circuito por donde fluye una corriente muy elevada, ya que el conductor se calentaría y produciría el derretimiento del aislante que lo protege, creando así un riesgo potencial de incendio.

De igual forma, con la corriente se determina los dispositivos de control (Suiches) y de protección (Breques), estos últimos, deben de elegirse de modo que puedan mantener la máxima corriente que demande el circuito.

Tipos de corrientes

Corriente alterna


La corriente alterna es aquella que circula durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante. Su polaridad se invierte periódicamente, haciendo que la corriente fluya alternativamente en una dirección y luego en la
otra. Se conoce en castellano por la abreviación CA y en inglés por la de AC.

Este tipo de corriente es la que nos llega a nuestras casas y sin ella no podríamos utilizar nuestros artefactos eléctricos y no tendríamos iluminación en nuestros hogares. Con esta corriente puede ser generada por un alternador o dinamo, la cual convierten energía mecánica en eléctrica.

Corriente continua

Es aquella corriente en donde los electrones circulan en la misma cantidad y sentido, es decir, que fluye en una misma dirección. Su polaridad es invariable y hace que fluya una corriente de amplitud relativamente constante a través de una carga.

A este tipo de corriente se le conoce como corriente continua (cc) o corriente directa (cd), y es generada por una pila o batería.